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Abstract
We investigate the BPS soliton solutions of U(N) Chern–Simons gauge theory
coupled to a scalar field in a noncommutative plane. With a scalar field in the
fundamental representation, we show that the BPS equation becomes that of
the Abelian Chern–Simons theory in the unitary gauge. We also find a class
of particular solutions for the BPS equation with a scalar field in the adjoint
representation.

PACS numbers: 11.27.+d, 11.10.Kk

1. Introduction

The study of solitonic solutions on noncommutative spaces has been an active topic over
recent years because of their possible relevance to strings and brane dynamics [1–3]. So far,
the noncommutative counterparts of the variety of non-perturbative solutions like instantons,
monopoles and vortices in commutative field theories have been found [4–6]. An extension
to a noncommutative space supplies further solitonic configurations whose commutative
counterparts do not exist.

In 2+1 dimensions, the Chern–Simons term plays an important role in condensed matter
physics. The Chern–Simons theory on a noncommutative plane can describe the quantum Hall
system [7]. The soliton solutions of relativistic and nonrelativistic Chern–Simons theories
coupled with matters have been studied extensively. Various noncommutative extensions of
these solutions were also explored by many authors [8–10]. In [11], general construction of
nonrelativistic BPS solitons of non-Abelian Chern–Simons theory coupled with an adjoint
matter was conjectured. This conjecture is based on the fact that the BPS equations for
Chern–Simons solitons on the noncommutative plane can be related to the equations of the
U(N) noncommutative chiral model which can also be solved formally by Uhlenbeck’s uniton
method [12].
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In the present paper we investigate noncommutative BPS solitons in U(N) Chern–Simons
theory coupled to a scalar field. We express the scalar field both in the fundamental and adjoint
representations. In [13], the BPS solitons for an SU(N) gauge group in the commutative plane
were studied in detail.

The noncommutative plane with spatial coordinates (x, y) is defined by the following
commutation relation:

[x, y] = iθ, θ > 0. (1)

Field theory on this noncommutative plane can be realized by replacing the ordinary pointwise
products in the corresponding commutative field theory with the Moyal ∗-product. The Moyal
∗-product is defined by

(f ∗ g)(x) = e
i
2 θμν ∂

∂xμ
∂

∂yν f (x)g(y)|x=y

= f (x)g(x) +
i

2
θμν ∂f

∂xμ

∂g

∂xν
+ O(θ2), (2)

with commutative coordinates x and y.
Noncommutativity with the commutation relation (1) can be equivalently expressed with

operators on a certain Fock space as follows. We define a and a† as

a = x + iy√
2θ

, a† = x − iy√
2θ

; (3)

then [a, a†] = 1. This satisfies the algebra of the quantum harmonic oscillator. Here we use
this Fock space for the representation of the algebra (1). Now, the spatial integration becomes
the trace over the Fock space,

∫
d2xO(x) → 2πθ TrO = 2πθ

∞∑
n=0

〈n|O|n〉, (4)

where |n〉 (n = 0, 1, 2, . . .) are the basis of the Fock space, and the spatial derivatives become

∂− = ∂1 − i∂2 → −
√

2

θ
[a†, ], ∂+ = ∂1 + i∂2 →

√
2

θ
[a, ]. (5)

2. Fundamental representation

First, we consider a noncommutative extension of Chern–Simons theories coupled to a scalar
field in the fundamental representation. With a U(N) gauge group we study solitonic solutions
in the relativistic case. The gauge field dynamics is described by the Chern–Simons Lagrangian
defined as

LCS = κεμνρ tr
(
Aμ∂νAρ − 2

3 iAμAνAρ

)
, (6)

where Aμ are given by N × N Hermitian matrices and ‘tr’ means trace over the gauge group.
We consider a model coupled to a scalar field defined by the following Lagrangian:

L = LCS + |Dμφ|2 − V (φ, φ†), (7)

where Dμφ = (∂μ − iAμ)φ. The potential for the fundamental scalar field is chosen to be

V (φ, φ†) = 1

4κ2
|φ|2(|φ|2 − v2)2, (8)

where |φ|2 = φ†φ. In the commutative case, SU(N) Chern–Simons theory with the same
sixth-order potential allows the solitonic solutions which saturate BPS bounds [13]. We show

2



J. Phys. A: Math. Theor. 43 (2010) 205401 Ee Chang-Young et al

that the same BPS structures exist in the noncommutative extension. The potential has two
degenerate vacua: the symmetric phase where φ = 0 and the asymmetric phase where φ = v.

Using the time translational invariance of the model, the Hamiltonian can be constructed
as

H = 2πθ Tr(|D0φ|2 + |Diφ|2 + V (φ, φ†)). (9)

This model is invariant under the global U(1) phase shift of the scalar field in addition to the
U(N) gauge symmetry. The corresponding conserved global charge is given by

Q = i2πθ Tr[(D0φ)†φ − φ†(D0φ)]. (10)

The Gauss law derived from (7) is

κF a
12 = i

N∑
α,β=1

T a
αβ

(
φβ(D0φ)†α + (D0φ)βφ†

α

)
, (11)

where T a, a = 0, 1, 2, . . . , N2 − 1, are U(N) gauge group generators. We use explicit
matrix representation of the generators as follows: T 0 = 1√

2N
diag(1, 1, . . . , 1) which is the

global U(1) generator, T D = T N2−1 = 1√
2N(N−1)

diag(1, . . . , 1, N −1) and for the remaining
generators we follow the convention in [11].

We are interested in finding a static configuration with the lowest energy for a given global
charge Q. With (10), the energy functional can be written as complete squared forms plus a
global charge:

H = 2πθTr

(∣∣∣D0φ ± i

2κ
φ(|φ|2 − v2)

∣∣∣2
+ |(D1 ± iD2)φ|2

)
± v2

2κ
Q. (12)

The energy is bounded from below by v2

2κ
|Q|, and the field configuration saturating the bound

should satisfy the following BPS equations:

(D1 ± iD2)φ = 0,

D0φ ± i

2κ
φ(|φ|2 − v2) = 0,

(13)

as well as the Gauss constraint (11). The above equations imply that the minimum energy
configuration is stationary in time.

To solve the BPS equations, let us consider a semi-unitary gauge

φT = (0, . . . , 0, χ), (14)

where χ is a complex scalar field. In this gauge, the nontrivial components of the gauge field
are A0

μ and AD
μ which are the components of the gauge field associated with the generators T0

and TD, respectively. Furthermore, one can note from (13) that

AD
μ = −√

N − 1A0
μ. (15)

We define a new gauge field Vμ as

Vμ =
√

2

N
A0

μ. (16)

With the Gauss law constraint (11) and V± = V1 ± iV2, the BPS equations in (13) become

(∂± − iV±)χ = 0,

B ± 1

2κ2
χ(χ †χ − v2)χ † = 0,

(17)
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where the magnetic field for Vμ

B = ∂1V2 − ∂2V1 − i[V1, V2]. (18)

Now, we investigate the rotationally symmetric configurations of BPS equations explicitly.
From the gauge transformation property we can decompose the gauge field into a gauge
covariant part K and non-covariant one as in [14]:

V− = i

√
2

θ
(a† − K†). (19)

We consider the BPS equation (upper sign in (17)) and take the following ansatz for χ

and Vμ (via K):

χ = v

∞∑
n=0

χn|n〉〈n + m|, K =
∞∑

n=0

kn|n〉〈n + 1|, (20)

for a given positive integer m. Inserting these into the BPS equations we get the following
algebraic recurrence equations for coefficients χn and kn:

kn =
√

n + m + 1
χn

χn+1
, n = 0, 1, 2, . . . ,

χ2
1 = χ2

0 (m + 1)

1 + ηχ2
0

(
1 − χ2

0

) ,

χ2
n+1 = (n + m + 1)χ2

n

1 + ηχ2
n

(
1 − χ2

n

)
+ (n + m)χ2

n−1

/
χ2

n

, n = 1, 2, . . . ,

(21)

where η = θv4/2κ2. These equations enable us to find all kn’s and χ2
n ’s for given k0 and χ2

0 .
The energy of the BPS configuration is given by the global charge Q which can be expressed
by the magnetic flux of the gauge field Vμ using the Gauss law (11):

Q = 4πθκ Tr(B). (22)

With ansatz (20), the magnetic field B of (18) is given by

B = 1

θ

∞∑
n=0

(
k2
n − k2

n−1 − 1
)|n〉〈n|, (23)

where k−1 = 0. Hence, with equation (21) one can easily note that in order to have a finite
energy configuration, the asymptotic values of kn and χn should meet the following conditions:

k2
n → (n + m + 1), χn → 1 as n → ∞. (24)

Since the number operatorN = a†a is related to the radial distance r2 = x2+y2 = 2θ(N+1/2),
the above conditions mean that the scalar field should remain at the asymmetric phase and the
gauge field becomes pure gauge at spatial infinity. Now, the magnetic flux � of B becomes

� = 2πθ Tr(B) = lim
N→∞

(
k2
N − N − 1

) = 2πm (25)

and the energy of BPS configuration in (20) becomes

H = 2πv2m. (26)

One of the important aspects of Chern–Simons solitons is that they carry the angular
momentum. Since our model is invariant under the spatial rotation δxi = εij x

j (we omitted the
infinitesimal parameter), the angular momentum can be constructed by following the Noether
construction of conserved charges (see [9, 15]). In the commutative space, the infinitesimal
transformations of the scalar and gauge field are δφ = −δxj ∂jφ and δAi = −δxj ∂jAi +εijAj ,
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which can be generalized to the noncommutative case by symmetrizing the products of
coordinates and fields:

δφ = − i

2θ
[(xk)

2, φ],

δAi = − i

2θ
[(xk)

2, Ai] + εijAj .
(27)

In order to make the variation of fields gauge covariant, we add the gauge transform
� = − 1

2θ
((Xk)

2 − (xk)
2) where Xi = xi + θεijAj is the gauge covariant position operator.

The resulting transformations of φ and Aμ read

δcovφ = (δ + δ�)φ = − i

2θ
((Xk)

2φ − φ(xk)
2),

δcovAi = (δ + δ�)Ai = − 1

2θ
(XiF12 + F12Xi).

(28)

The gauge transformation � will only change the action by a total time derivative term after
the use of the Gauss law. The gauge invariant expression for the angular momentum is now

J = − iπ

2
Tr(φ†(Xk)

2D0φ − (D0φ)†(Xk)
2φ − (xk)

2(φ†D0φ − (D0φ)†φ)), (29)

and for our rotationally symmetric ansatz (20) we get

J = −πκm2, (30)

where we have used fact that the temporal component V0 = ∑∞
n=0 vn|n〉〈n| whose coefficient

vn is given by

vnf
2
n = κ

θv2

(
1 + k2

n−1 − k2
n

)
, n = 0, 1, 2, . . . (31)

from the Gauss law (11). The angular momentum is proportional to the square of vorticity m
which agrees with the results in the relativistic commutative model [16].

In the commutative case, parity transform of the BPS solution gives the corresponding
anti-BPS solution. However, due to parity violation in noncommutative field theory, we cannot
use the procedure of the commutative case. The rotationally symmetric configuration ansatz
for the anti-BPS equations (lower sign) reads

χ = v

∞∑
n=0

χn|n + m〉〈n|, K =
∞∑

n=0

kn|n〉〈n + 1|, (32)

for a given positive integer m. Again with these ansatz one can find the following recurrence
relations without difficulty:

kn =
√

n + 1, n = 0, 1, . . . , m − 1,

kn = √
n + 1 − m

χn+1

χn

, n = m,m + 1, . . .

χ2
1 = χ2

0

(
1 + m + ηχ2

0

(
χ2

0 − 1
))

,

χ2
n+1 = χ2

n

(
1 + nχ2

n

/
χ2

n−1 + ηχ2
n

(
χ2

n − 1
))/

(n + 1), n = 1, 2, . . .

(33)

and V0 = ∑∞
n=0 vn|n + m〉〈n + m| with

vnf
2
n = κ

θv2

(
1 + k2

n−1+m − k2
n+m

)
, n = 0, 1, 2, . . . (34)

The energy of the anti-BPS configuration in (32) is

H = 2πv2m, (35)
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and the angular momentum is given by using equation (29):

J = −πκm2. (36)

It is possible to show that for a small θ value, solutions (20) and (32) approach to the
well-known solutions of commutative (anti-)BPS equations [10]. Noncommutativity enables
us to find an unusual solution which has no commutative counterpart. From the third equation
of (33) we see that if χ2

0 = (v2/2)(1 ± √
1 − 4(m + 1)/η), then χ consists of a single term

χ ∼ |m〉〈0|. However, with truncated expression
∑m−1

n=0

√
n + 1|n〉〈n + 1| for K Gauss’s law

cannot be satisfied. Fortunately, the solution found in [9] can be embedded into our model:

χ = χ±|m − 1〉〈0|, K = PmcPm + SmcS†
m, m = 1, 2, . . . , (37)

where Pm = ∑m−1
n=0 |n〉〈n| is a projection operator and Sm = ∑∞

n=0 |n + m〉〈n| is a shift
operator. The constant χ± is given by

χ2
± = v2

2
(1 ±

√
1 − 8κ2m/θv4). (38)

Since the solution exists only for θ � 8κ2m/v4, this solution has no commutative counterpart.
Note that the magnetic field of Vμ is given by

B = −1

θ
m|m − 1〉〈m − 1|, (39)

and the energy of the configuration in (37) is given by

H = 2πv2m, (40)

and the angular momentum is from equation (29)

J = −πκm(m − 2). (41)

3. Adjoint representation

Next, we consider the scalar field in the adjoint representation of the gauge group U(N). The
dynamics of the gauge and scalar fields is governed by the following Lagrangian:

L = LCS + tr|Dμφ|2 − V (φ, φ†), (42)

where Dμφ = ∂μφ − i[Aμ, φ]. If we choose a sextet-order potential

V (φ, φ†) = 1

4κ2
tr|[[φ, φ†], φ] − v2φ|2, (43)

the model also enjoys the BPS equations. The energy functional is given by

H = 2πθ Tr

(
tr

∣∣∣D0φ ± i

2κ
([[φ, φ†], φ] − v2φ)

∣∣∣2
+ tr|(D1 ± iD2)φ|2

)
± v2

2κ
Q. (44)

The conserved global U(1) charge for the adjoint scalar case is given by

Q = −i2πθ Tr[tr((D0φ)†φ − φ†(D0φ))]. (45)

The Gauss law constraint for this model is

F12 = − i

2κ
([D0φ, φ†] − [φ, (D0φ)†]). (46)

The saturation of energy functional occurs when the following BPS equations are satisfied:

(D1 ± iD2)φ = 0,

D0φ ± i

2κ
([[φ, φ†], φ] − v2φ) = 0.

(47)
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With the Gauss law constraint, the BPS equations become

D±φ = 0,

F+− = ∓ i

κ2
[v2φ − [[φ, φ†], φ], φ†].

(48)

Before we solve the above BPS equations, we review the solutions of the nonrelativistic
DJPT model on the noncommutative plane [11] where the BPS equations read

D±φ = 0, F+− = i[φ, φ†]. (49)

In the commutative case, there is an equivalence between the BPS equations and the chiral
model equations. The solutions of chiral model have been completely classified in [17]. In
the noncommutative case, it was conjectured in [11] that the general solution of chiral model
with finite energy can be constructed with any holomorphic projection operators.

Due to the appearance of the triple commutator in (48) we cannot directly apply the method
suggested in [11]. However note that the vacuum configuration is given by [[φ, φ†], φ] = v2φ,
and if the field configuration satisfies

[[φ, φ†], φ] ∝ φ, (50)

then we end up with the same type of BPS equations as appeared in [11], i.e. the BPS
equations become those of the nonrelativistic DJPT model. Thus the solutions found in [11]
would become solutions in our case if they satisfy the additional condition (50). Only a part
of the solutions for (49) satisfies (50) as we see below. One can check that the following form
of the holomorphic projection operator P satisfies condition (50):

P =

⎛
⎜⎜⎜⎝

d1

. . .

dN−1 ∑m−1
n=0 |n〉〈n|

⎞
⎟⎟⎟⎠ , d1 = · · · = dN−1 = 0 or 1, (51)

where m = 1, 2, . . . . From the relation φ = −√
2
θ

[a†,P] in the DJPT model for BPS soliton
(upper sign), φ takes the form

φ = diag(0, . . . , 0, h), (52)

where

h = h0|m〉〈m − 1|. (53)

The constant h0 is introduced to satisfy (50) and determined from the BPS equations (anti-BPS
solution can also be obtained with the relation φ =√

2
θ

[a,P]). Now one important comment
is in order. In fact, one can transform the projection operator in (51) into that of [11] by
unitary transformation with an appropriate unitary operator U [18]. Namely, the φ given by
φ = −√

2
θ

[a†,UPU †] satisfies (49). However, this does not satisfy the extra constraint (50), thus
cannot be our solution. On the other hand, the φ given by φ = −√

2
θ

[Ua†U †,UPU †] satisfies
the nonrelativistic BPS equation (49) as well as the extra constraint as we saw above. This
conforms with our previous comment that only a part of the solutions of [11] becomes our
solutions.

From (48) and (52), one can note that the nonvanishing components of the U(N) gauge
field are A0

μ and AD
μ . The nature of this solution finding process is similar to the Abelian

embedding in the previous case with fundamental scalar. Inserting the φ in (52) into the BPS
equations (48) yields

h = −v

2

(
1 ±

√
1 − 16κ2m

θv4

)1/2

|m〉〈m − 1|. (54)
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This kind of solutions does not exist in the commutative limit (θ → 0) since the parameter
θ should satisfy θ > 16κ2m/v4. When θ is finite, h does not go to its vacuum. This is
different from the commutative case. The conserved U(1) charge of the solution is now given
by

Q = 4πκm, m = 1, 2, 3, . . . . (55)

The non-Abelian magnetic field of the solution can be expressed as

F+− = m(|m − 1〉〈m − 1| − |m〉〈m|) diag(0, . . . , 1), (56)

and thus the net magnetic flux vanishes. The angular momentum of solution (54) is obtained
as

J = −πκm(m − 2). (57)

To summarize, we consider solitonic solutions in the noncommutative U(N) Chern–
Simons gauge theory coupled to a scalar field in the fundamental and adjoint representations.
When coupled to the fundamental scalar, we obtain solutions by embedding the solutions
of the noncommutative Abelian Chern–Simons–Higgs model. With adjoint scalar, we get a
class of particular solutions whose commutative counterparts do not exist. We discuss the
angular momentum of our solutions in addition to their energy and global charges which
characterize the soliton. Full analysis of general BPS solutions with the adjoint scalar needs
further investigation.
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